標準庫標頭檔案 <memory>
來自 cppreference.com
此標頭檔案是動態記憶體管理庫的一部分。
包含 | |
(C++20) |
三路比較運算子支援 |
類 | |
指標特性 | |
(C++11) |
提供有關類指標型別的資訊 (類模板) |
垃圾回收器支援 | |
(C++11)(在 C++23 中已移除) |
列出指標安全模型 (列舉) |
分配器 | |
預設分配器 (類模板) | |
(C++11) |
提供關於分配器型別的資訊 (類模板) |
(C++23) |
記錄 allocate_at_least 分配的儲存地址和實際大小(類模板) |
(C++11) |
檢查指定型別是否支援 uses-allocator 構造 (類模板) |
未初始化儲存 | |
(在 C++17 中已棄用)(在 C++20 中已移除) |
一個迭代器,允許標準演算法將結果儲存在未初始化記憶體中 (類模板) |
智慧指標 | |
(C++11) |
具有唯一物件所有權語義的智慧指標 (類模板) |
(C++11) |
具有共享物件所有權語義的智慧指標 (類模板) |
(C++11) |
對由 std::shared_ptr 管理的物件的弱引用 (類模板) |
(C++11 中已廢棄)(C++17 中已移除) |
具有嚴格物件所有權語義的智慧指標 (類模板) |
輔助類 | |
(C++20) |
原子共享指標 (類模板特化) |
(C++20) |
原子弱指標 (類模板特化) |
(C++11) |
提供基於所有者的共享指標和弱指標的混合型別排序 (類模板) |
(C++26) |
為共享指標和弱指標提供基於所有者的雜湊 (類) |
(C++26) |
提供基於所有者的共享指標和弱指標的混合型別相等比較 (類) |
(C++11) |
允許物件建立指向自身的 shared_ptr (類模板) |
(C++11) |
訪問已銷燬物件的 `weak_ptr` 時丟擲的異常 (類) |
(C++11) |
unique_ptr 的預設刪除器 (類模板) |
(C++11) |
std::unique_ptr 的雜湊支援 (類模板特化) |
(C++11) |
std::shared_ptr 的雜湊支援 (類模板特化) |
智慧指標介面卡 | |
(C++23) |
與外部指標設定器互動,並在銷燬時重置智慧指標 (類模板) |
(C++23) |
與外部指標設定器互動,從智慧指標獲取初始指標值,並在銷燬時重置它 (類模板) |
前向宣告 | |
定義於標頭檔案
<functional> | |
(C++11) |
雜湊函式物件 (類模板) |
定義於標頭檔案
<atomic> | |
(C++11) |
atomic 類模板和針對 bool、整型、浮點型(C++20 起) 和指標型別的特化 (類模板) |
標籤 | |
(C++11) |
用於選擇分配器感知建構函式的標記 (標籤) |
函式 | |
使用分配器構造 | |
準備與給定型別所需的使用分配器構造方式匹配的引數列表 (函式模板) | |
(C++20) |
透過 uses-allocator 構造建立給定型別的物件 (函式模板) |
透過使用分配器構造在指定記憶體位置建立給定型別的物件 (函式模板) | |
雜項 | |
(C++20) |
從類指標型別獲取原始指標 (函式模板) |
(C++11) |
獲取物件的實際地址,即使 & 運算子被過載(函式模板) |
(C++11) |
在緩衝區中對齊指標 (函式) |
(C++20) |
通知編譯器指標已對齊 (函式模板) |
(C++26) |
檢查指標是否指向對齊值至少為給定值的物件 (函式模板) |
顯式生命週期管理 | |
在給定儲存中隱式建立物件,並重用物件表示 (函式模板) | |
垃圾回收器支援 | |
(C++11)(在 C++23 中已移除) |
宣告一個物件不能被回收 (函式) |
(C++11)(在 C++23 中已移除) |
宣告一個物件可以被回收 (函式模板) |
(C++11)(在 C++23 中已移除) |
宣告一個記憶體區域不包含可追溯指標 (函式) |
(C++11)(在 C++23 中已移除) |
取消 std::declare_no_pointers 的效果 (函式) |
(C++11)(在 C++23 中已移除) |
返回當前指標安全模型 (函式) |
未初始化儲存 | |
將物件範圍複製到未初始化記憶體區域 (函式模板) | |
(C++11) |
將一定數量的物件複製到未初始化記憶體區域 (函式模板) |
將物件複製到由範圍定義的未初始化記憶體區域 (函式模板) | |
將物件複製到由起始和計數定義的未初始化記憶體區域 (函式模板) | |
(C++17) |
將一系列物件移動到未初始化記憶體區域 (函式模板) |
(C++17) |
將多個物件移動到未初始化記憶體區域 (函式模板) |
透過預設初始化在由範圍定義的未初始化記憶體區域中構造物件 (函式模板) | |
在由起始和計數定義的未初始化記憶體區域中,透過預設初始化構造物件 (函式模板) | |
在由範圍定義的未初始化記憶體區域中,透過值初始化構造物件 (函式模板) | |
在由起始和計數定義的未初始化記憶體區域中,透過值初始化構造物件 (函式模板) | |
(C++20) |
在給定地址建立物件 (函式模板) |
(C++17) |
銷燬給定地址處的物件 (函式模板) |
(C++17) |
銷燬物件範圍 (函式模板) |
(C++17) |
銷燬範圍內的多個物件 (函式模板) |
(在 C++17 中已棄用)(在 C++20 中已移除) |
獲取未初始化儲存 (函式模板) |
(在 C++17 中已棄用)(在 C++20 中已移除) |
釋放未初始化儲存 (函式模板) |
智慧指標非成員操作 | |
(C++14)(C++20) |
建立一個管理新物件的唯一指標 (函式模板) |
(C++20 中移除)(C++20) |
與另一個 unique_ptr 或 nullptr 比較(函式模板) |
(C++20 起) |
建立一個管理新物件的共享指標 (函式模板) |
建立一個共享指標,該指標管理使用分配器分配的新物件 (函式模板) | |
對儲存的指標應用 static_cast、dynamic_cast、const_cast 或 reinterpret_cast (函式模板) | |
如果擁有,則返回指定型別的刪除器 (函式模板) | |
(C++20 中移除)(C++20 中移除)(C++20 中移除)(C++20 中移除)(C++20 中移除)(C++20) |
與另一個 shared_ptr 或 nullptr 比較(函式模板) |
將儲存的指標值輸出到輸出流 (函式模板) | |
(C++20) |
將管理的指標值輸出到輸出流 (函式模板) |
(C++11) |
特化 std::swap 演算法 (函式模板) |
(C++11) |
特化 std::swap 演算法 (函式模板) |
(C++11) |
特化 std::swap 演算法 (函式模板) |
智慧指標介面卡建立 | |
(C++23) |
建立帶有相關智慧指標和重置引數的 out_ptr_t (函式模板) |
(C++23) |
建立一個帶有關聯智慧指標和重置引數的 inout_ptr_t (函式模板) |
特化 std::shared_ptr 的原子操作(函式模板) |
類函式實體 | |
定義於名稱空間
std::ranges | |
未初始化儲存 | |
(C++20) |
將物件範圍複製到未初始化記憶體區域 (演算法函式物件) |
(C++20) |
將一定數量的物件複製到未初始化記憶體區域 (演算法函式物件) |
(C++20) |
將物件複製到由範圍定義的未初始化記憶體區域 (演算法函式物件) |
(C++20) |
將物件複製到由起始和計數定義的未初始化記憶體區域 (演算法函式物件) |
(C++20) |
將一系列物件移動到未初始化記憶體區域 (演算法函式物件) |
(C++20) |
將多個物件移動到未初始化記憶體區域 (演算法函式物件) |
透過預設初始化在由範圍定義的未初始化記憶體區域中構造物件 (演算法函式物件) | |
透過預設初始化在由起始和計數定義的未初始化記憶體區域中構造物件 (演算法函式物件) | |
在由範圍定義的未初始化記憶體區域中,透過值初始化構造物件 (演算法函式物件) | |
在由起始和計數定義的未初始化記憶體區域中,透過值初始化構造物件 (演算法函式物件) | |
(C++20) |
在給定地址建立物件 (演算法函式物件) |
(C++20) |
銷燬給定地址處的物件 (演算法函式物件) |
(C++20) |
銷燬物件範圍 (演算法函式物件) |
(C++20) |
銷燬範圍內的多個物件 (演算法函式物件) |
[編輯] 概要
#include <compare> namespace std { // pointer traits template<class Ptr> struct pointer_traits; template<class T> struct pointer_traits<T*>; // pointer conversion template<class T> constexpr T* to_address(T* p) noexcept; template<class Ptr> constexpr auto to_address(const Ptr& p) noexcept; // pointer alignment void* align(size_t alignment, size_t size, void*& ptr, size_t& space); template<size_t N, class T> constexpr T* assume_aligned(T* ptr); // explicit lifetime management template<class T> T* start_lifetime_as(void* p) noexcept; // freestanding template<class T> const T* start_lifetime_as(const void* p) noexcept; // freestanding template<class T> volatile T* start_lifetime_as(volatile void* p) noexcept; // freestanding template<class T> const volatile T* start_lifetime_as(const volatile void* p) noexcept; // freestanding template<class T> T* start_lifetime_as_array(void* p, size_t n) noexcept; // freestanding template<class T> const T* start_lifetime_as_array(const void* p, size_t n) noexcept; // freestanding template<class T> volatile T* start_lifetime_as_array(volatile void* p, size_t n) noexcept; // freestanding template<class T> const volatile T* start_lifetime_as_array(const volatile void* p, // freestanding size_t n) noexcept; // allocator argument tag struct allocator_arg_t { explicit allocator_arg_t() = default; }; inline constexpr allocator_arg_t allocator_arg{}; // uses_allocator template<class T, class Alloc> struct uses_allocator; // uses_allocator template<class T, class Alloc> inline constexpr bool uses_allocator_v = uses_allocator<T, Alloc>::value; // uses-allocator construction template<class T, class Alloc, class... Args> constexpr auto uses_allocator_construction_args(const Alloc& alloc, Args&&... args) noexcept; template<class T, class Alloc, class Tuple1, class Tuple2> constexpr auto uses_allocator_construction_args(const Alloc& alloc, piecewise_construct_t, Tuple1&& x, Tuple2&& y) noexcept; template<class T, class Alloc> constexpr auto uses_allocator_construction_args(const Alloc& alloc) noexcept; template<class T, class Alloc, class U, class V> constexpr auto uses_allocator_construction_args(const Alloc& alloc, U&& u, V&& v) noexcept; template<class T, class Alloc, class U, class V> constexpr auto uses_allocator_construction_args(const Alloc& alloc, const pair<U, V>& pr) noexcept; template<class T, class Alloc, class U, class V> constexpr auto uses_allocator_construction_args(const Alloc& alloc, pair<U, V>&& pr) noexcept; template<class T, class Alloc, class... Args> constexpr T make_obj_using_allocator(const Alloc& alloc, Args&&... args); template<class T, class Alloc, class... Args> constexpr T* uninitialized_construct_using_allocator(T* p, const Alloc& alloc, Args&&... args); // allocator traits template<class Alloc> struct allocator_traits; template<class Pointer, class SizeType = size_t> struct allocation_result { Pointer ptr; SizeType count; }; // the default allocator template<class T> class allocator; template<class T, class U> constexpr bool operator==(const allocator<T>&, const allocator<U>&) noexcept; // addressof template<class T> constexpr T* addressof(T& r) noexcept; template<class T> const T* addressof(const T&&) = delete; // specialized algorithms // special memory concepts template<class I> concept no-throw-input-iterator = /* see description */; // exposition only template<class I> concept no-throw-forward-iterator = /* see description */; // exposition only template<class S, class I> concept no-throw-sentinel-for = /* see description */; // exposition only template<class R> concept no-throw-input-range = /* see description */; // exposition only template<class R> concept no-throw-forward-range = /* see description */; // exposition only template<class NoThrowForwardIt> void uninitialized_default_construct(NoThrowForwardIt first, NoThrowForwardIt last); template<class ExecutionPolicy, class NoThrowForwardIt> void uninitialized_default_construct(ExecutionPolicy&& exec, NoThrowForwardIt first, NoThrowForwardIt last); template<class NoThrowForwardIt, class Size> NoThrowForwardIt uninitialized_default_construct_n(NoThrowForwardIt first, Size n); template<class ExecutionPolicy, class NoThrowForwardIt, class Size> NoThrowForwardIt uninitialized_default_construct_n(ExecutionPolicy&& exec, NoThrowForwardIt first, Size n); namespace ranges { template<no-throw-forward-iterator I, no-throw-sentinel-for<I> S> requires default_initializable<iter_value_t<I>> I uninitialized_default_construct(I first, S last); template<no-throw-forward-range R> requires default_initializable<range_value_t<R>> borrowed_iterator_t<R> uninitialized_default_construct(R&& r); template<no-throw-forward-iterator I> requires default_initializable<iter_value_t<I>> I uninitialized_default_construct_n(I first, iter_difference_t<I> n); } template<class NoThrowForwardIterator> void uninitialized_value_construct(NoThrowForwardIterator first, NoThrowForwardIterator last); template<class ExecutionPolicy, class NoThrowForwardIt> void uninitialized_value_construct(ExecutionPolicy&& exec, NoThrowForwardIt first, NoThrowForwardIt last); template<class NoThrowForwardIt, class Size> NoThrowForwardIt uninitialized_value_construct_n(NoThrowForwardIt first, Size n); template<class ExecutionPolicy, class NoThrowForwardIt, class Size> NoThrowForwardIt uninitialized_value_construct_n(ExecutionPolicy&& exec, NoThrowForwardIt first, Size n); namespace ranges { template<no-throw-forward-iterator I, no-throw-sentinel-for<I> S> requires default_initializable<iter_value_t<I>> I uninitialized_value_construct(I first, S last); template<no-throw-forward-range R> requires default_initializable<range_value_t<R>> borrowed_iterator_t<R> uninitialized_value_construct(R&& r); template<no-throw-forward-iterator I> requires default_initializable<iter_value_t<I>> I uninitialized_value_construct_n(I first, iter_difference_t<I> n); } template<class InputIt, class NoThrowForwardIt> NoThrowForwardIt uninitialized_copy(InputIt first, InputIt last, NoThrowForwardIt result); template<class ExecutionPolicy, class ForwardIt, class NoThrowForwardIt> NoThrowForwardIt uninitialized_copy(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last, NoThrowForwardIt result); template<class InputIt, class Size, class NoThrowForwardIt> NoThrowForwardIt uninitialized_copy_n(InputIt first, Size n, NoThrowForwardIt result); template<class ExecutionPolicy, class ForwardIt, class Size, class NoThrowForwardIt> NoThrowForwardIt uninitialized_copy_n(ExecutionPolicy&& exec, ForwardIt first, Size n, NoThrowForwardIt result); namespace ranges { template<class I, class O> using uninitialized_copy_result = in_out_result<I, O>; template<input_iterator I, sentinel_for<I> S1, no-throw-forward-iterator O, no-throw-sentinel-for<O> S2> requires constructible_from<iter_value_t<O>, iter_reference_t<I>> uninitialized_copy_result<I, O> uninitialized_copy(I ifirst, S1 ilast, O ofirst, S2 olast); template<input_range IR, no-throw-forward-range OR> requires constructible_from<range_value_t<OR>, range_reference_t<IR>> uninitialized_copy_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>> uninitialized_copy(IR&& in_range, OR&& out_range); template<class I, class O> using uninitialized_copy_n_result = in_out_result<I, O>; template<input_iterator I, no-throw-forward-iterator O, no-throw-sentinel-for<O> S> requires constructible_from<iter_value_t<O>, iter_reference_t<I>> uninitialized_copy_n_result<I, O> uninitialized_copy_n(I ifirst, iter_difference_t<I> n, O ofirst, S olast); } template<class InputIt, class NoThrowForwardIt> NoThrowForwardIt uninitialized_move(InputIt first, InputIt last, NoThrowForwardIt result); template<class ExecutionPolicy, class ForwardIt, class NoThrowForwardIt> NoThrowForwardIt uninitialized_move(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last, NoThrowForwardIt result); template<class InputIt, class Size, class NoThrowForwardIt> pair<InputIt, NoThrowForwardIt> uninitialized_move_n(InputIt first, Size n, NoThrowForwardIt result); template<class ExecutionPolicy, class ForwardIt, class Size, class NoThrowForwardIt> pair<ForwardIt, NoThrowForwardIt> uninitialized_move_n(ExecutionPolicy&& exec, ForwardIt first, Size n, NoThrowForwardIt result); namespace ranges { template<class I, class O> using uninitialized_move_result = in_out_result<I, O>; template<input_iterator I, sentinel_for<I> S1, no-throw-forward-iterator O, no-throw-sentinel-for<O> S2> requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>> uninitialized_move_result<I, O> uninitialized_move(I ifirst, S1 ilast, O ofirst, S2 olast); template<input_range IR, no-throw-forward-range OR> requires constructible_from<range_value_t<OR>, range_rvalue_reference_t<IR>> uninitialized_move_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>> uninitialized_move(IR&& in_range, OR&& out_range); template<class I, class O> using uninitialized_move_n_result = in_out_result<I, O>; template<input_iterator I, no-throw-forward-iterator O, no-throw-sentinel-for<O> S> requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>> uninitialized_move_n_result<I, O> uninitialized_move_n(I ifirst, iter_difference_t<I> n, O ofirst, S olast); } template<class NoThrowForwardIt, class T> void uninitialized_fill(NoThrowForwardIt first, NoThrowForwardIt last, const T& x); template<class ExecutionPolicy, class NoThrowForwardIt, class T> void uninitialized_fill(ExecutionPolicy&& exec, NoThrowForwardIt first, NoThrowForwardIt last, const T& x); template<class NoThrowForwardIt, class Size, class T> NoThrowForwardIt uninitialized_fill_n(NoThrowForwardIt first, Size n, const T& x); template<class ExecutionPolicy, class NoThrowForwardIt, class Size, class T> NoThrowForwardIt uninitialized_fill_n(ExecutionPolicy&& exec, NoThrowForwardIt first, Size n, const T& x); namespace ranges { template<no-throw-forward-iterator I, no-throw-sentinel-for<I> S, class T> requires constructible_from<iter_value_t<I>, const T&> I uninitialized_fill(I first, S last, const T& x); template<no-throw-forward-range R, class T> requires constructible_from<range_value_t<R>, const T&> borrowed_iterator_t<R> uninitialized_fill(R&& r, const T& x); template<no-throw-forward-iterator I, class T> requires constructible_from<iter_value_t<I>, const T&> I uninitialized_fill_n(I first, iter_difference_t<I> n, const T& x); } // construct_at template<class T, class... Args> constexpr T* construct_at(T* location, Args&&... args); namespace ranges { template<class T, class... Args> constexpr T* construct_at(T* location, Args&&... args); } // destroy template<class T> constexpr void destroy_at(T* location); template<class NoThrowForwardIt> constexpr void destroy(NoThrowForwardIt first, NoThrowForwardIt last); template<class ExecutionPolicy, class NoThrowForwardIt> void destroy(ExecutionPolicy&& exec, NoThrowForwardIt first, NoThrowForwardIt last); template<class NoThrowForwardIt, class Size> constexpr NoThrowForwardIt destroy_n(NoThrowForwardIt first, Size n); template<class ExecutionPolicy, class NoThrowForwardIt, class Size> NoThrowForwardIt destroy_n(ExecutionPolicy&& exec, NoThrowForwardIt first, Size n); namespace ranges { template<destructible T> constexpr void destroy_at(T* location) noexcept; template<no-throw-input-iterator I, no-throw-sentinel-for<I> S> requires destructible<iter_value_t<I>> constexpr I destroy(I first, S last) noexcept; template<no-throw-input-range R> requires destructible<range_value_t<R>> constexpr borrowed_iterator_t<R> destroy(R&& r) noexcept; template<no-throw-input-iterator I> requires destructible<iter_value_t<I>> constexpr I destroy_n(I first, iter_difference_t<I> n) noexcept; } // class template unique_ptr template<class T> struct default_delete; template<class T> struct default_delete<T[]>; template<class T, class D = default_delete<T>> class unique_ptr; template<class T, class D> class unique_ptr<T[], D>; template<class T, class... Args> unique_ptr<T> make_unique(Args&&... args); // T is not array template<class T> unique_ptr<T> make_unique(size_t n); // T is U[] template<class T, class... Args> /* unspecified */ make_unique(Args&&...) = delete; // T is U[N] template<class T> unique_ptr<T> make_unique_for_overwrite(); // T is not array template<class T> unique_ptr<T> make_unique_for_overwrite(size_t n); // T is U[] template<class T, class... Args> /* unspecified */ make_unique_for_overwrite(Args&&...) = delete; // T is U[N] template<class T, class D> void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y) noexcept; template<class T1, class D1, class T2, class D2> bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T1, class D1, class T2, class D2> bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T1, class D1, class T2, class D2> bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T1, class D1, class T2, class D2> bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T1, class D1, class T2, class D2> bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T1, class D1, class T2, class D2> requires three_way_comparable_with<typename unique_ptr<T1, D1>::pointer, typename unique_ptr<T2, D2>::pointer> compare_three_way_result_t<typename unique_ptr<T1, D1>::pointer, typename unique_ptr<T2, D2>::pointer> operator<=>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T, class D> bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept; template<class T, class D> bool operator<(const unique_ptr<T, D>& x, nullptr_t); template<class T, class D> bool operator<(nullptr_t, const unique_ptr<T, D>& y); template<class T, class D> bool operator>(const unique_ptr<T, D>& x, nullptr_t); template<class T, class D> bool operator>(nullptr_t, const unique_ptr<T, D>& y); template<class T, class D> bool operator<=(const unique_ptr<T, D>& x, nullptr_t); template<class T, class D> bool operator<=(nullptr_t, const unique_ptr<T, D>& y); template<class T, class D> bool operator>=(const unique_ptr<T, D>& x, nullptr_t); template<class T, class D> bool operator>=(nullptr_t, const unique_ptr<T, D>& y); template<class T, class D> requires three_way_comparable<typename unique_ptr<T, D>::pointer> compare_three_way_result_t<typename unique_ptr<T, D>::pointer> operator<=>(const unique_ptr<T, D>& x, nullptr_t); template<class E, class T, class Y, class D> basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const unique_ptr<Y, D>& p); // class bad_weak_ptr class bad_weak_ptr; // class template shared_ptr template<class T> class shared_ptr; // shared_ptr creation template<class T, class... Args> shared_ptr<T> make_shared(Args&&... args); // T is not array template<class T, class A, class... Args> shared_ptr<T> allocate_shared(const A& a, Args&&... args); // T is not array template<class T> shared_ptr<T> make_shared(size_t N); // T is U[] template<class T, class A> shared_ptr<T> allocate_shared(const A& a, size_t N); // T is U[] template<class T> shared_ptr<T> make_shared(); // T is U[N] template<class T, class A> shared_ptr<T> allocate_shared(const A& a); // T is U[N] template<class T> shared_ptr<T> make_shared(size_t N, const remove_extent_t<T>& u); // T is U[] template<class T, class A> shared_ptr<T> allocate_shared(const A& a, size_t N, const remove_extent_t<T>& u); // T is U[] template<class T> shared_ptr<T> make_shared(const remove_extent_t<T>& u); // T is U[N] template<class T, class A> shared_ptr<T> allocate_shared(const A& a, const remove_extent_t<T>& u); // T is U[N] template<class T> shared_ptr<T> make_shared_for_overwrite(); // T is not U[] template<class T, class A> shared_ptr<T> allocate_shared_for_overwrite(const A& a); // T is not U[] template<class T> shared_ptr<T> make_shared_for_overwrite(size_t N); // T is U[] template<class T, class A> shared_ptr<T> allocate_shared_for_overwrite(const A& a, size_t N); // T is U[] // shared_ptr comparisons template<class T, class U> bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> strong_ordering operator<=>(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T> bool operator==(const shared_ptr<T>& x, nullptr_t) noexcept; template<class T> strong_ordering operator<=>(const shared_ptr<T>& x, nullptr_t) noexcept; // shared_ptr specialized algorithms template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept; // shared_ptr casts template<class T, class U> shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> static_pointer_cast(shared_ptr<U>&& r) noexcept; template<class T, class U> shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> dynamic_pointer_cast(shared_ptr<U>&& r) noexcept; template<class T, class U> shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> const_pointer_cast(shared_ptr<U>&& r) noexcept; template<class T, class U> shared_ptr<T> reinterpret_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> reinterpret_pointer_cast(shared_ptr<U>&& r) noexcept; // shared_ptr get_deleter template<class D, class T> D* get_deleter(const shared_ptr<T>& p) noexcept; // shared_ptr I/O template<class E, class T, class Y> basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const shared_ptr<Y>& p); // class template weak_ptr template<class T> class weak_ptr; // weak_ptr specialized algorithms template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept; // class template owner_less template<class T = void> struct owner_less; // class template enable_shared_from_this template<class T> class enable_shared_from_this; // hash support template<class T> struct hash; template<class T, class D> struct hash<unique_ptr<T, D>>; template<class T> struct hash<shared_ptr<T>>; // atomic smart pointers template<class T> struct atomic; template<class T> struct atomic<shared_ptr<T>>; template<class T> struct atomic<weak_ptr<T>>; // class template out_ptr_t template<class Smart, class Pointer, class... Args> class out_ptr_t; // function template out_ptr template<class Pointer = void, class Smart, class... Args> auto out_ptr(Smart& s, Args&&... args); // class template inout_ptr_t template<class Smart, class Pointer, class... Args> class inout_ptr_t; // function template inout_ptr template<class Pointer = void, class Smart, class... Args> auto inout_ptr(Smart& s, Args&&... args); } // deprecated namespace std { template<class T> bool atomic_is_lock_free(const shared_ptr<T>* p); template<class T> shared_ptr<T> atomic_load(const shared_ptr<T>* p); template<class T> shared_ptr<T> atomic_load_explicit(const shared_ptr<T>* p, memory_order mo); template<class T> void atomic_store(shared_ptr<T>* p, shared_ptr<T> r); template<class T> void atomic_store_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo); template<class T> shared_ptr<T> atomic_exchange(shared_ptr<T>* p, shared_ptr<T> r); template<class T> shared_ptr<T> atomic_exchange_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo); template<class T> bool atomic_compare_exchange_weak(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w); template<class T> bool atomic_compare_exchange_strong(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w); template<class T> bool atomic_compare_exchange_weak_explicit( shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w, memory_order success, memory_order failure); template<class T> bool atomic_compare_exchange_strong_explicit( shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w, memory_order success, memory_order failure); }
[編輯] 輔助概念
注意:這些名稱僅用於說明,不屬於介面的一部分。
template<class I> concept no-throw-input-iterator = // exposition only input_iterator<I> && is_lvalue_reference_v<iter_reference_t<I>> && same_as<remove_cvref_t<iter_reference_t<I>>, iter_value_t<I>>; template<class S, class I> concept no-throw-sentinel-for = sentinel_for<S, I>; // exposition only template<class R> concept no-throw-input-range = // exposition only ranges::range<R> && no-throw-input-iterator<ranges::iterator_t<R>> && no-throw-sentinel-for<ranges::sentinel_t<R>, ranges::iterator_t<R>>; template<class I> concept no-throw-forward-iterator = // exposition only no-throw-input-iterator<I> && forward_iterator<I> && no-throw-sentinel-for<I, I>; template<class R> concept no-throw-forward-range = // exposition only no-throw-input-range<R> && no-throw-forward-iterator<ranges::iterator_t<R>>;
[編輯] 類模板 std::pointer_traits
namespace std { template<class Ptr> struct pointer_traits { using pointer = Ptr; using element_type = /* see description */; using difference_type = /* see description */; template<class U> using rebind = /* see description */; static pointer pointer_to(/* see description */ r); }; template<class T> struct pointer_traits<T*> { using pointer = T*; using element_type = T; using difference_type = ptrdiff_t; template<class U> using rebind = U*; static constexpr pointer pointer_to(/* see description */ r) noexcept; }; }
[編輯] 類 std::allocator_arg_t
namespace std { struct allocator_arg_t { explicit allocator_arg_t() = default; }; inline constexpr allocator_arg_t allocator_arg{}; }
[編輯] 類模板 std::allocator_traits
namespace std { template<class Alloc> struct allocator_traits { using allocator_type = Alloc; using value_type = typename Alloc::value_type; using pointer = /* see description */; using const_pointer = /* see description */; using void_pointer = /* see description */; using const_void_pointer = /* see description */; using difference_type = /* see description */; using size_type = /* see description */; using propagate_on_container_copy_assignment = /* see description */; using propagate_on_container_move_assignment = /* see description */; using propagate_on_container_swap = /* see description */; using is_always_equal = /* see description */; template<class T> using rebind_alloc = /* see description */; template<class T> using rebind_traits = allocator_traits<rebind_alloc<T>>; static pointer allocate(Alloc& a, size_type n); static pointer allocate(Alloc& a, size_type n, const_void_pointer hint); static constexpr allocation_result<pointer, size_type> allocate_at_least(Alloc& a, size_type n); static void deallocate(Alloc& a, pointer p, size_type n); template<class T, class... Args> static void construct(Alloc& a, T* p, Args&&... args); template<class T> static void destroy(Alloc& a, T* p); static size_type max_size(const Alloc& a) noexcept; static Alloc select_on_container_copy_construction(const Alloc& rhs); }; }
[編輯] 類模板 std::allocator
namespace std { template<class T> class allocator { public: using value_type = T; using size_type = size_t; using difference_type = ptrdiff_t; using propagate_on_container_move_assignment = true_type; constexpr allocator() noexcept; constexpr allocator(const allocator&) noexcept; template<class U> constexpr allocator(const allocator<U>&) noexcept; constexpr ~allocator(); constexpr allocator& operator=(const allocator&) = default; constexpr T* allocate(size_t n); constexpr allocation_result<T*> allocate_at_least(size_t n); constexpr void deallocate(T* p, size_t n); // deprecated using is_always_equal = true_type; }; }
[編輯] 類模板 std::default_delete
namespace std { template<class T> struct default_delete { constexpr default_delete() noexcept = default; template<class U> default_delete(const default_delete<U>&) noexcept; void operator()(T*) const; }; template<class T> struct default_delete<T[]> { constexpr default_delete() noexcept = default; template<class U> default_delete(const default_delete<U[]>&) noexcept; template<class U> void operator()(U* ptr) const; }; }
[編輯] 類模板 std::unique_ptr
namespace std { template<class T, class D = default_delete<T>> class unique_ptr { public: using pointer = /* see description */; using element_type = T; using deleter_type = D; // constructors constexpr unique_ptr() noexcept; explicit unique_ptr(pointer p) noexcept; unique_ptr(pointer p, /* see description */ d1) noexcept; unique_ptr(pointer p, /* see description */ d2) noexcept; unique_ptr(unique_ptr&& u) noexcept; constexpr unique_ptr(nullptr_t) noexcept; template<class U, class E> unique_ptr(unique_ptr<U, E>&& u) noexcept; // destructor ~unique_ptr(); // assignment unique_ptr& operator=(unique_ptr&& u) noexcept; template<class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept; unique_ptr& operator=(nullptr_t) noexcept; // observers add_lvalue_reference_t<T> operator*() const noexcept(/* see description */); pointer operator->() const noexcept; pointer get() const noexcept; deleter_type& get_deleter() noexcept; const deleter_type& get_deleter() const noexcept; explicit operator bool() const noexcept; // modifiers pointer release() noexcept; void reset(pointer p = pointer()) noexcept; void swap(unique_ptr& u) noexcept; // disable copy from lvalue unique_ptr(const unique_ptr&) = delete; unique_ptr& operator=(const unique_ptr&) = delete; }; template<class T, class D> class unique_ptr<T[], D> { public: using pointer = /* see description */; using element_type = T; using deleter_type = D; // constructors constexpr unique_ptr() noexcept; template<class U> explicit unique_ptr(U p) noexcept; template<class U> unique_ptr(U p, /* see description */ d) noexcept; template<class U> unique_ptr(U p, /* see description */ d) noexcept; unique_ptr(unique_ptr&& u) noexcept; template<class U, class E> unique_ptr(unique_ptr<U, E>&& u) noexcept; constexpr unique_ptr(nullptr_t) noexcept; // destructor ~unique_ptr(); // assignment unique_ptr& operator=(unique_ptr&& u) noexcept; template<class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept; unique_ptr& operator=(nullptr_t) noexcept; // observers T& operator[](size_t i) const; pointer get() const noexcept; deleter_type& get_deleter() noexcept; const deleter_type& get_deleter() const noexcept; explicit operator bool() const noexcept; // modifiers pointer release() noexcept; template<class U> void reset(U p) noexcept; void reset(nullptr_t = nullptr) noexcept; void swap(unique_ptr& u) noexcept; // disable copy from lvalue unique_ptr(const unique_ptr&) = delete; unique_ptr& operator=(const unique_ptr&) = delete; }; }
[編輯] 類 std::bad_weak_ptr
namespace std { class bad_weak_ptr : public exception { public: bad_weak_ptr() noexcept; }; }
[編輯]
namespace std { template<class T> class shared_ptr { public: using element_type = remove_extent_t<T>; using weak_type = weak_ptr<T>; // constructors constexpr shared_ptr() noexcept; constexpr shared_ptr(nullptr_t) noexcept : shared_ptr() { } template<class Y> explicit shared_ptr(Y* p); template<class Y, class D> shared_ptr(Y* p, D d); template<class Y, class D, class A> shared_ptr(Y* p, D d, A a); template<class D> shared_ptr(nullptr_t p, D d); template<class D, class A> shared_ptr(nullptr_t p, D d, A a); template<class Y> shared_ptr(const shared_ptr<Y>& r, element_type* p) noexcept; template<class Y> shared_ptr(shared_ptr<Y>&& r, element_type* p) noexcept; shared_ptr(const shared_ptr& r) noexcept; template<class Y> shared_ptr(const shared_ptr<Y>& r) noexcept; shared_ptr(shared_ptr&& r) noexcept; template<class Y> shared_ptr(shared_ptr<Y>&& r) noexcept; template<class Y> explicit shared_ptr(const weak_ptr<Y>& r); template<class Y, class D> shared_ptr(unique_ptr<Y, D>&& r); // destructor ~shared_ptr(); // assignment shared_ptr& operator=(const shared_ptr& r) noexcept; template<class Y> shared_ptr& operator=(const shared_ptr<Y>& r) noexcept; shared_ptr& operator=(shared_ptr&& r) noexcept; template<class Y> shared_ptr& operator=(shared_ptr<Y>&& r) noexcept; template<class Y, class D> shared_ptr& operator=(unique_ptr<Y, D>&& r); // modifiers void swap(shared_ptr& r) noexcept; void reset() noexcept; template<class Y> void reset(Y* p); template<class Y, class D> void reset(Y* p, D d); template<class Y, class D, class A> void reset(Y* p, D d, A a); // observers element_type* get() const noexcept; T& operator*() const noexcept; T* operator->() const noexcept; element_type& operator[](ptrdiff_t i) const; long use_count() const noexcept; explicit operator bool() const noexcept; template<class U> bool owner_before(const shared_ptr<U>& b) const noexcept; template<class U> bool owner_before(const weak_ptr<U>& b) const noexcept; }; template<class T> shared_ptr(weak_ptr<T>) -> shared_ptr<T>; template<class T, class D> shared_ptr(unique_ptr<T, D>) -> shared_ptr<T>; }
[編輯] 類模板 std::weak_ptr
namespace std { template<class T> class weak_ptr { public: using element_type = remove_extent_t<T>; // constructors constexpr weak_ptr() noexcept; template<class Y> weak_ptr(const shared_ptr<Y>& r) noexcept; weak_ptr(const weak_ptr& r) noexcept; template<class Y> weak_ptr(const weak_ptr<Y>& r) noexcept; weak_ptr(weak_ptr&& r) noexcept; template<class Y> weak_ptr(weak_ptr<Y>&& r) noexcept; // destructor ~weak_ptr(); // assignment weak_ptr& operator=(const weak_ptr& r) noexcept; template<class Y> weak_ptr& operator=(const weak_ptr<Y>& r) noexcept; template<class Y> weak_ptr& operator=(const shared_ptr<Y>& r) noexcept; weak_ptr& operator=(weak_ptr&& r) noexcept; template<class Y> weak_ptr& operator=(weak_ptr<Y>&& r) noexcept; // modifiers void swap(weak_ptr& r) noexcept; void reset() noexcept; // observers long use_count() const noexcept; bool expired() const noexcept; shared_ptr<T> lock() const noexcept; template<class U> bool owner_before(const shared_ptr<U>& b) const noexcept; template<class U> bool owner_before(const weak_ptr<U>& b) const noexcept; }; template<class T> weak_ptr(shared_ptr<T>) -> weak_ptr<T>; }
[編輯] 類模板 std::owner_less
namespace std { template<class T = void> struct owner_less; template<class T> struct owner_less<shared_ptr<T>> { bool operator()(const shared_ptr<T>&, const shared_ptr<T>&) const noexcept; bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const noexcept; bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const noexcept; }; template<class T> struct owner_less<weak_ptr<T>> { bool operator()(const weak_ptr<T>&, const weak_ptr<T>&) const noexcept; bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const noexcept; bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const noexcept; }; template<> struct owner_less<void> { template<class T, class U> bool operator()(const shared_ptr<T>&, const shared_ptr<U>&) const noexcept; template<class T, class U> bool operator()(const shared_ptr<T>&, const weak_ptr<U>&) const noexcept; template<class T, class U> bool operator()(const weak_ptr<T>&, const shared_ptr<U>&) const noexcept; template<class T, class U> bool operator()(const weak_ptr<T>&, const weak_ptr<U>&) const noexcept; using is_transparent = /* unspecified */; }; }
[編輯]
namespace std { template<class T> class enable_shared_from_this { protected: constexpr enable_shared_from_this() noexcept; enable_shared_from_this(const enable_shared_from_this&) noexcept; enable_shared_from_this& operator=(const enable_shared_from_this&) noexcept; ~enable_shared_from_this(); public: shared_ptr<T> shared_from_this(); shared_ptr<T const> shared_from_this() const; weak_ptr<T> weak_from_this() noexcept; weak_ptr<T const> weak_from_this() const noexcept; private: mutable weak_ptr<T> weak_this; // exposition only }; }
[編輯]
namespace std { template<class T> struct atomic<shared_ptr<T>> { using value_type = shared_ptr<T>; static constexpr bool is_always_lock_free = /* implementation-defined */; bool is_lock_free() const noexcept; void store(shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; shared_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept; operator shared_ptr<T>() const noexcept; shared_ptr<T> exchange(shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired, memory_order success, memory_order failure) noexcept; bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired, memory_order success, memory_order failure) noexcept; bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; constexpr atomic() noexcept = default; atomic(shared_ptr<T> desired) noexcept; atomic(const atomic&) = delete; void operator=(const atomic&) = delete; void operator=(shared_ptr<T> desired) noexcept; private: shared_ptr<T> p; // exposition only }; }
[編輯] 類模板 std::atomic 對 std::weak_ptr 的特化
namespace std { template<class T> struct atomic<weak_ptr<T>> { using value_type = weak_ptr<T>; static constexpr bool is_always_lock_free = /* implementation-defined */; bool is_lock_free() const noexcept; void store(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; weak_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept; operator weak_ptr<T>() const noexcept; weak_ptr<T> exchange(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired, memory_order success, memory_order failure) noexcept; bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired, memory_order success, memory_order failure) noexcept; bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; constexpr atomic() noexcept = default; atomic(weak_ptr<T> desired) noexcept; atomic(const atomic&) = delete; void operator=(const atomic&) = delete; void operator=(weak_ptr<T> desired) noexcept; private: weak_ptr<T> p; // exposition only }; }
[編輯] 類模板 std::out_ptr_t
namespace std { template<class Smart, class Pointer, class... Args> class out_ptr_t { public: explicit out_ptr_t(Smart&, Args...); out_ptr_t(const out_ptr_t&) = delete; ~out_ptr_t(); operator Pointer*() const noexcept; operator void**() const noexcept; private: Smart& s; // exposition only tuple<Args...> a; // exposition only Pointer p; // exposition only }; }
[編輯] 類模板 std::inout_ptr_t
namespace std { template<class Smart, class Pointer, class... Args> class inout_ptr_t { public: explicit inout_ptr_t(Smart&, Args...); inout_ptr_t(const inout_ptr_t&) = delete; ~inout_ptr_t(); operator Pointer*() const noexcept; operator void**() const noexcept; private: Smart& s; // exposition only tuple<Args...> a; // exposition only Pointer p; // exposition only }; }