名稱空間
變體
操作

std::sqrt(std::valarray)

來自 cppreference.com
< cpp‎ | numeric‎ | valarray
 
 
 
 
定義於標頭檔案 <valarray>
template< class T >
valarray<T> sqrt( const valarray<T>& va );

對於 `va` 中的每個元素,計算該元素的平方根。

目錄

[編輯] 引數

va - 要應用操作的值陣列

[編輯] 返回值

一個包含 `va` 中元素平方根的 `valarray`。

[編輯] 注意

使用非限定函式(`sqrt`)執行計算。如果此類函式不可用,則由於實參依賴查詢,將使用 `std::sqrt`。

該函式可以使用與 std::valarray 不同的返回型別實現。在這種情況下,替換型別具有以下屬性:

  • 提供 std::valarray 的所有 const 成員函式。
  • `std::valarray`、`std::slice_array`、`std::gslice_array`、`std::mask_array` 和 `std::indirect_array` 可以從替換型別構造。
  • 對於每個接受 `const std::valarray&` 的函式(除了 `begin()` 和 `end()`(C++11 起)),應新增接受替換型別的相同函式;
  • 對於每個接受兩個 `const std::valarray&` 引數的函式,應新增接受 `const std::valarray&` 和替換型別所有組合的相同函式。
  • 返回型別不會在最深層巢狀的引數型別之上增加超過兩個模板巢狀級別。

[編輯] 可能的實現

template<class T>
valarray<T> sqrt(const valarray<T>& va)
{
    valarray<T> other = va;
    for (T& i : other)
        i = sqrt(i);
 
    return other; // proxy object may be returned
}

[編輯] 示例

一次性找到幾個三次方程的所有三個根(其中兩個可以是複共軛)。

#include <cassert>
#include <complex>
#include <cstddef>
#include <iostream>
#include <numbers>
#include <valarray>
 
using CD = std::complex<double>;
using VA = std::valarray<CD>;
 
// return all n complex roots out of a given complex number x
VA root(CD x, unsigned n)
{
    const double mag = std::pow(std::abs(x), 1.0 / n);
    const double step = 2.0 * std::numbers::pi / n;
    double phase = std::arg(x) / n;
    VA v(n);
    for (std::size_t i{}; i != n; ++i, phase += step)
        v[i] = std::polar(mag, phase);
    return v;
}
 
// return n complex roots of each element in v; in the output valarray first
// goes the sequence of all n roots of v[0], then all n roots of v[1], etc.
VA root(VA v, unsigned n)
{
    VA o(v.size() * n);
    VA t(n);
    for (std::size_t i = 0; i != v.size(); ++i)
    {
        t = root(v[i], n);
        for (unsigned j = 0; j != n; ++j)
            o[n * i + j] = t[j];
    }
    return o;
}
 
// floating-point numbers comparator that tolerates given rounding error
inline bool is_equ(CD x, CD y, double tolerance = 0.000'000'001)
{
    return std::abs(std::abs(x) - std::abs(y)) < tolerance;
}
 
int main()
{
    // input coefficients for polynomial x³ + p·x + q
    const VA p{1, 2, 3, 4, 5, 6, 7, 8};
    const VA q{1, 2, 3, 4, 5, 6, 7, 8};
 
    // the solver
    const VA d = std::sqrt(std::pow(q / 2, 2) + std::pow(p / 3, 3));
    const VA u = root(-q / 2 + d, 3);
    const VA n = root(-q / 2 - d, 3);
 
    // allocate memory for roots: 3 * number of input cubic polynomials
    VA x[3];
    for (std::size_t t = 0; t != 3; ++t)
        x[t].resize(p.size());
 
    auto is_proper_root = [](CD a, CD b, CD p) { return is_equ(a * b + p / 3.0, 0.0); };
 
    // sieve out 6 out of 9 generated roots, leaving only 3 proper roots (per polynomial)
    for (std::size_t i = 0; i != p.size(); ++i)
        for (std::size_t j = 0, r = 0; j != 3; ++j)
            for (std::size_t k = 0; k != 3; ++k)
                if (is_proper_root(u[3 * i + j], n[3 * i + k], p[i]))
                    x[r++][i] = u[3 * i + j] + n[3 * i + k];
 
    std::cout << "Depressed cubic equation:   Root 1: \t\t Root 2: \t\t Root 3:\n";
    for (std::size_t i = 0; i != p.size(); ++i)
    {
        std::cout << "x³ + " << p[i] << "·x + " << q[i] << " = 0  "
                  << std::fixed << x[0][i] << "  " << x[1][i] << "  " << x[2][i]
                  << std::defaultfloat << '\n';
 
        assert(is_equ(std::pow(x[0][i], 3) + x[0][i] * p[i] + q[i], 0.0));
        assert(is_equ(std::pow(x[1][i], 3) + x[1][i] * p[i] + q[i], 0.0));
        assert(is_equ(std::pow(x[2][i], 3) + x[2][i] * p[i] + q[i], 0.0));
    }
}

輸出

Depressed cubic equation:   Root 1:              Root 2:                 Root 3:
x³ + (1,0)·x + (1,0) = 0  (-0.682328,0.000000)  (0.341164,1.161541)  (0.341164,-1.161541)
x³ + (2,0)·x + (2,0) = 0  (-0.770917,0.000000)  (0.385458,1.563885)  (0.385458,-1.563885)
x³ + (3,0)·x + (3,0) = 0  (-0.817732,0.000000)  (0.408866,1.871233)  (0.408866,-1.871233)
x³ + (4,0)·x + (4,0) = 0  (-0.847708,0.000000)  (0.423854,2.130483)  (0.423854,-2.130483)
x³ + (5,0)·x + (5,0) = 0  (-0.868830,0.000000)  (0.434415,2.359269)  (0.434415,-2.359269)
x³ + (6,0)·x + (6,0) = 0  (-0.884622,0.000000)  (0.442311,2.566499)  (0.442311,-2.566499)
x³ + (7,0)·x + (7,0) = 0  (-0.896922,0.000000)  (0.448461,2.757418)  (0.448461,-2.757418)
x³ + (8,0)·x + (8,0) = 0  (-0.906795,0.000000)  (0.453398,2.935423)  (0.453398,-2.935423)

[編輯] 另請參閱

將函式 std::pow 應用於兩個 valarray 或一個 valarray 和一個值
(函式模板) [編輯]
(C++11)(C++11)
計算平方根(x
(函式) [編輯]
右半平面範圍內的復平方根
(函式模板) [編輯]