std::ranges::find_first_of
定義於標頭檔案 <algorithm> |
||
呼叫簽名 (Call signature) |
||
template< std::input_iterator I1, std::sentinel_for<I1> S1, std::forward_iterator I2, std::sentinel_for<I2> S2, |
(1) | (C++20 起) |
template< ranges::input_range R1, ranges::forward_range R2, class Pred = ranges::equal_to, |
(2) | (C++20 起) |
[
first1,
last1)
中搜索範圍 [
first2,
last2)
中的任意元素。投影后的元素使用二元謂詞 pred 進行比較。本頁描述的類函式實體是 演算法函式物件(非正式地稱為 niebloids),即
目錄 |
[編輯] 引數
first1, last1 | - | 定義要檢查的元素範圍(又稱乾草堆)的迭代器-哨兵對 |
first2, last2 | - | 定義要搜尋的元素範圍(又稱針)的迭代器-哨兵對 |
r1 | - | 要檢查的元素範圍(又稱乾草堆) |
r2 | - | 要搜尋的元素範圍(又稱針) |
pred | - | 用於比較元素的二元謂詞 |
proj1 | - | 應用於第一個範圍元素的投影。 |
proj2 | - | 應用於第二個範圍元素的投影。 |
[編輯] 返回值
指向範圍 [
first1,
last1)
中第一個元素(在投影后)的迭代器,該元素等於範圍 [
first2,
last2)
中的某個元素。如果未找到此類元素,則返回與 last1 比較相等的迭代器。
[編輯] 複雜度
謂詞和每個投影最多應用 S * N 次,其中
(1) S = ranges::distance(first2, last2) 且 N = ranges::distance(first1, last1);
(2) S = ranges::distance(r2) 且 N = ranges::distance(r1)。
[編輯] 可能的實現
struct find_first_of_fn { template<std::input_iterator I1, std::sentinel_for<I1> S1, std::forward_iterator I2, std::sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity> requires std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr I1 operator()(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const { for (; first1 != last1; ++first1) for (auto i = first2; i != last2; ++i) if (std::invoke(pred, std::invoke(proj1, *first1), std::invoke(proj2, *i))) return first1; return first1; } template<ranges::input_range R1, ranges::forward_range R2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity> requires std::indirectly_comparable<ranges::iterator_t<R1>, ranges::iterator_t<R2>, Pred, Proj1, Proj2> constexpr ranges::borrowed_iterator_t<R1> operator()(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const { return (*this)(ranges::begin(r1), ranges::end(r1), ranges::begin(r2), ranges::end(r2), std::move(pred), std::move(proj1), std::move(proj2)); } }; inline constexpr find_first_of_fn find_first_of {}; |
[編輯] 示例
#include <algorithm> #include <iostream> #include <iterator> int main() { namespace rng = std::ranges; constexpr static auto haystack = {1, 2, 3, 4}; constexpr static auto needles = {0, 3, 4, 3}; constexpr auto found1 = rng::find_first_of(haystack.begin(), haystack.end(), needles.begin(), needles.end()); static_assert(std::distance(haystack.begin(), found1) == 2); constexpr auto found2 = rng::find_first_of(haystack, needles); static_assert(std::distance(haystack.begin(), found2) == 2); constexpr static auto negatives = {-6, -3, -4, -3}; constexpr auto not_found = rng::find_first_of(haystack, negatives); static_assert(not_found == haystack.end()); constexpr auto found3 = rng::find_first_of(haystack, negatives, [](int x, int y) { return x == -y; }); // uses a binary comparator static_assert(std::distance(haystack.begin(), found3) == 2); struct P { int x, y; }; constexpr static auto p1 = {P{1, -1}, P{2, -2}, P{3, -3}, P{4, -4}}; constexpr static auto p2 = {P{5, -5}, P{6, -3}, P{7, -5}, P{8, -3}}; // Compare only P::y data members by projecting them: const auto found4 = rng::find_first_of(p1, p2, {}, &P::y, &P::y); std::cout << "First equivalent element {" << found4->x << ", " << found4->y << "} was found at position " << std::distance(p1.begin(), found4) << ".\n"; }
輸出
First equivalent element {3, -3} was found at position 2.
[編輯] 參閱
搜尋一組元素中的任何一個 (函式模板) | |
(C++20) |
尋找第一對相等的(或滿足給定謂詞的)相鄰項 (演算法函式物件) |
(C++20)(C++20)(C++20) |
尋找第一個滿足特定條件的元素 (演算法函式物件) |
(C++20) |
在特定範圍中尋找最後一次出現的元素序列 (演算法函式物件) |
(C++20) |
搜尋一個範圍的元素首次出現的位置 (演算法函式物件) |
(C++20) |
在一個範圍內搜尋一個元素的連續 N 次副本首次出現的位置 (演算法函式物件) |