名稱空間
變體
操作

std::legendre, std::legendref, std::legendrel

來自 cppreference.com
< cpp‎ | 數值‎ | 特殊函式
 
 
 
 
定義於標頭檔案 <cmath>
(1)
float       legendre ( unsigned int n, float x );

double      legendre ( unsigned int n, double x );

long double legendre ( unsigned int n, long double x );
(C++17 起)
(直至 C++23)
/* 浮點型別 */ legendre( unsigned int n,
                                    /* 浮點型別 */ x );
(C++23 起)
float       legendref( unsigned int n, float x );
(2) (C++17 起)
long double legendrel( unsigned int n, long double x );
(3) (C++17 起)
定義於標頭檔案 <cmath>
template< class Integer >
double      legendre ( unsigned int n, Integer x );
(A) (C++17 起)
1-3) 計算次數為 n、自變數為 x 的非關聯勒讓德多項式 庫為 std::legendre 提供所有 cv 非限定浮點型別作為引數 x 的型別的過載。(C++23 起)
A) 為所有整數型別提供了額外的過載,它們被視為 double

目錄

[編輯] 引數

n - 多項式的次數
x - 變數,浮點或整數值

[編輯] 返回值

如果沒有錯誤發生,則返回 xn 階非關聯勒讓德多項式的值,即
1
2n
n!
dn
dxn
(x2
-1)n

[編輯] 錯誤處理

錯誤可能按 math_errhandling 中指定的方式報告。

  • 如果引數是 NaN,則返回 NaN,不報告域錯誤
  • 函式不要求對 |x|>1 定義
  • 如果 n 大於或等於 128,則行為由實現定義

[編輯] 注意

不支援 C++17 但支援 ISO 29124:2010 的實現,若實現將 __STDCPP_MATH_SPEC_FUNCS__ 定義為至少 201003L 且使用者在包含任何標準庫標頭檔案前定義 __STDCPP_WANT_MATH_SPEC_FUNCS__,則提供此函式。

不支援 ISO 29124:2010 但支援 TR 19768:2007 (TR1) 的實現,在標頭檔案 tr1/cmath 和名稱空間 std::tr1 中提供此函式。

此函式的一個實現也在 boost.math 中可用

前幾個勒讓德多項式是:

函式 多項式
    legendre(0, x)     1
legendre(1, x) x
legendre(2, x)
1
2
(3x2
- 1)
legendre(3, x)
1
2
(5x3
- 3x)
legendre(4, x)     
1
8
(35x4
- 30x2
+ 3)
    

不要求精確提供 (A) 中所示的額外過載。它們只需足以確保對於整型引數 numstd::legendre(int_num, num) 的效果與 std::legendre(int_num, static_cast<double>(num)) 相同。

[編輯] 示例

#include <cmath>
#include <iostream>
 
double P3(double x)
{
    return 0.5 * (5 * std::pow(x, 3) - 3 * x);
}
 
double P4(double x)
{
    return 0.125 * (35 * std::pow(x, 4) - 30 * x * x + 3);
}
 
int main()
{
    // spot-checks
    std::cout << std::legendre(3, 0.25) << '=' << P3(0.25) << '\n'
              << std::legendre(4, 0.25) << '=' << P4(0.25) << '\n';
}

輸出

-0.335938=-0.335938
0.157715=0.157715

[編輯] 參閱

(C++17)(C++17)(C++17)
拉蓋爾多項式
(函式) [編輯]
(C++17)(C++17)(C++17)
埃爾米特多項式
(函式) [編輯]

[編輯] 外部連結

Weisstein, Eric W. "Legendre Polynomial." From MathWorld — A Wolfram Web Resource.